Title of article :
Irrational proofs for three theorems of Stanley
Author/Authors :
Beck، نويسنده , , Matthias and Sottile، نويسنده , , Frank، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
7
From page :
403
To page :
409
Abstract :
We give new proofs of three theorems of Stanley on generating functions for the integer points in rational cones. The first relates the rational generating function σ v + K ( x ) ≔ ∑ m ∈ ( v + K ) ∩ Z d x m , where K is a rational cone and v ∈ R d , with σ − v + K ∘ ( 1 / x ) . The second theorem asserts that the generating function 1 + ∑ n ≥ 1 L P ( n ) t n of the Ehrhart quasi-polynomial L P ( n ) ≔ # ( n P ∩ Z d ) of a rational polytope P can be written as a rational function ν P ( t ) ( 1 − t ) dim P + 1 with nonnegative numerator ν P . The third theorem asserts that if P ⊆ Q , then ν P ≤ ν Q . Our proofs are based on elementary counting afforded by irrational decompositions of rational polyhedra.
Journal title :
European Journal of Combinatorics
Serial Year :
2007
Journal title :
European Journal of Combinatorics
Record number :
1545996
Link To Document :
بازگشت