Title of article :
Exponential Dowling structures
Author/Authors :
Ehrenborg، نويسنده , , Richard and Readdy، نويسنده , , Margaret A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
16
From page :
311
To page :
326
Abstract :
The notion of exponential Dowling structures is introduced, generalizing Stanley’s original theory of exponential structures. Enumerative theory is developed to determine the Möbius function of exponential Dowling structures, including a restriction of these structures to elements whose types satisfy a semigroup condition. Stanley’s study of permutations associated with exponential structures leads to a similar vein of study for exponential Dowling structures. In particular, for the extended r -divisible partition lattice we show that the Möbius function is, up to a sign, the number of permutations in the symmetric group on r n + k elements having descent set { r , 2 r , … , n r } . Using Wachs’ original EL -labeling of the r -divisible partition lattice, the extended r -divisible partition lattice is shown to be EL -shellable.
Journal title :
European Journal of Combinatorics
Serial Year :
2009
Journal title :
European Journal of Combinatorics
Record number :
1546142
Link To Document :
بازگشت