Title of article :
Forbidden configurations: Boundary cases
Author/Authors :
Anstee، نويسنده , , R.P. and Raggi، نويسنده , , Miguel and Sali، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
16
From page :
51
To page :
66
Abstract :
A simple matrix is a { 0 , 1 } -matrix with no repeated columns. For a { 0 , 1 } -matrix F , define F ≺ A if there is a submatrix of A which is a row and column permutation of F . Let ‖ A ‖ denote the number of columns of A . Define forb ( m , F ) = max { ‖ A ‖ : A  is  m -rowed simple matrix and  F ⊀ A } . We classify all 6-rowed configurations F for which forb ( m , F ) is Θ ( m 2 ) and prove forb ( m , F ) is Ω ( m 3 ) for all other 6 -rowed F . We also prove that forb ( m , G ) is O ( m 2 ) for a particular 5 × 6 simple G and the addition of any column α to G makes forb ( m , [ G α ] ) to be Ω ( m 3 ) . The results are evidence for a conjecture of Anstee and Sali which predicts the growth rate of forb ( m , F ) as a function of F .
Journal title :
European Journal of Combinatorics
Serial Year :
2014
Journal title :
European Journal of Combinatorics
Record number :
1546326
Link To Document :
بازگشت