Title of article :
Functions Invariant under the Berezin Transform
Author/Authors :
Englis، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
22
From page :
233
To page :
254
Abstract :
We show that a bounded function f satisfies Bf = f, where B is the Berezin tranform on the unit disc (defined in (2) below), if and only if f is harmonic. There is an equivalent formulation of this result [S. Axler and Ž. Čučković, Integral Equations Operator Theory14 (1991), 1-12; W. Rudin, "Function Theory in the Unit Ball of CN," Springer-Verlag, New York/Berlin, 1980]: If f is bounded and satifies the invariant version of the area mean value property, then f is harmonic. The main tool employed is Fourier analysis on the Lie group of all Möbius transformations.
Journal title :
Journal of Functional Analysis
Serial Year :
1994
Journal title :
Journal of Functional Analysis
Record number :
1546340
Link To Document :
بازگشت