Title of article :
Localization Theorems for Equality of Minimal and Maximal Schrِdinger-Type Operators
Author/Authors :
Grinshpun، نويسنده , , E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
21
From page :
40
To page :
60
Abstract :
Consider the operators associated in L2(Rn) with τ = −div(A(x) · grad) + q(x) where q(x) is complex. We prove the Localization Theorems in the case of A(x) ≥ 0 and without a priori restrictions on the regularity field of the operator. The same approach for the operator with singular magnetic vector potential and real q(x) enables us to include q(x) with negative fall-off at infinity.
Journal title :
Journal of Functional Analysis
Serial Year :
1994
Journal title :
Journal of Functional Analysis
Record number :
1546493
Link To Document :
بازگشت