Title of article :
Classical regression model under zero-excess assumptions
Author/Authors :
Karl and De Vylder، نويسنده , , F. and Goovaerts، نويسنده , , M. and Cossette، نويسنده , , H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Abstract :
We consider the classical regression model defined by a random vector Xn×1, scalar matrices yn×m, vn×n, a scalar column bm×1 and a scalar s2 satisfying EX = yb, Cov X = s2v and the usual regularity conditions. Using only assumptions, we prove that the classical estimator ŝ2 for s2 in that model is the unique unbiased one with minimum variance in a large class of estimators.
Keywords :
Scalar product , Hilbert space , Orthogonal projection
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics