Title of article :
Large matchings in bipartite graphs have a rainbow matching
Author/Authors :
Kotlar، نويسنده , , Daniel and Ziv، نويسنده , , Ran، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
Let g ( n ) be the least number such that every collection of n matchings, each of size at least g ( n ) , in a bipartite graph, has a full rainbow matching. Aharoni and Berger (2009) conjectured that g ( n ) = n + 1 for every n > 1 . This generalizes famous conjectures of Ryser, Brualdi and Stein. Recently, Aharoni et al. proved that g ( n ) ≤ ⌊ 7 4 n ⌋ . We prove that g ( n ) ≤ ⌊ 5 3 n ⌋ .
Journal title :
European Journal of Combinatorics
Journal title :
European Journal of Combinatorics