Title of article :
On the nonexistence of almost Moore digraphs
Author/Authors :
Conde، نويسنده , , J. and Gimbert، نويسنده , , J. and Gonzلlez، نويسنده , , J. and Miller، نويسنده , , M. and Miret، نويسنده , , J.M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
Digraphs of maximum out-degree at most d > 1 , diameter at most k > 1 and order N ( d , k ) = d + ⋯ + d k are called almost Moore or ( d , k ) -digraphs. So far, the problem of their existence has been solved only when d = 2 , 3 or k = 2 , 3 , 4 . In this paper we derive the nonexistence of ( d , k ) -digraphs, with k > 4 and d > 3 , under the assumption of a conjecture related to the factorization of the polynomials Φ n ( 1 + x + ⋯ + x k ) , where Φ n ( x ) denotes the n th cyclotomic polynomial and 1 < n ≤ N ( d , k ) . Moreover, we prove that almost Moore digraphs do not exist for the particular cases when k = 5 and d = 4 , 5 or 6.
Journal title :
European Journal of Combinatorics
Journal title :
European Journal of Combinatorics