Title of article :
Differential equations and Sobolev orthogonality
Author/Authors :
Jung، نويسنده , , I.H. and Kwon، نويسنده , , K.H. and Lee، نويسنده , , D.W. and Littlejohn، نويسنده , , L.L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
8
From page :
173
To page :
180
Abstract :
Consider (Sobolev) orthogonal polynomials which are orthogonal relative to a Sobolev bilinear form ∫Rp(x)1(x)dμ(x)+∫Rp′(x)q′(x)dν(x), where dμ(x) and dνv(x) are signed Borel measures with finite moments. We give necessary and sufficient conditions under which such orthogonal polynomials satisfy a linear spectral differential equation with polynomial coefficients. We then find a sufficient condition under which such a differential equation is symmetrizable. These results can be applied to Sobolev-Laguerre polynomials found by Koekoek and Meijer.
Keywords :
Spectral differential equations , Sobolev orthogonal polynomials , Symmetrizability of differential operator
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1995
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1546595
Link To Document :
بازگشت