Title of article :
Sign patterns of rational matrices with large rank
Author/Authors :
Shitov، نويسنده , , Yaroslav، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
5
From page :
107
To page :
111
Abstract :
Let A be a real matrix. The term rank of A is the smallest number t of lines (that is, rows or columns) needed to cover all the nonzero entries of A . We prove a conjecture of Li et al. stating that, if the rank of A exceeds t − 3 , there is a rational matrix with the same sign pattern and rank as those of A . We point out a connection of the problem discussed with the Kapranov rank function of tropical matrices, and we show that the statement fails to hold in general if the rank of A does not exceed t − 3 .
Journal title :
European Journal of Combinatorics
Serial Year :
2014
Journal title :
European Journal of Combinatorics
Record number :
1546710
Link To Document :
بازگشت