Title of article :
On Positive Solutions of Critical Schrِdinger Operators in Two Dimensions
Author/Authors :
Gesztesy، نويسنده , , F. and Zhao، نويسنده , , Z.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
22
From page :
235
To page :
256
Abstract :
Using a probabilistic approach based on the Feynman-Kac formalism and the spectral radius of the shuttle operator, we prove that two-dimensional Schrödinger operators H=-Δ+V with short-range potentials V satisfying V(x)=|x|→ ∞ 0(|x|−2(ln (|x|))−2−ϵ) for some ϵ > 0 are critical if and only if Hψ = 0 has a positive bounded distributional solution ψ. It is shown that (apart from logarithmetic refinements) our decay assumptions on V(x) as |x|→ ∞ are the best possible. This yields a complete solution of a problem posed by Simon and extends an earlier result of Murata.
Journal title :
Journal of Functional Analysis
Serial Year :
1995
Journal title :
Journal of Functional Analysis
Record number :
1546754
Link To Document :
بازگشت