Title of article
Circular Chromatic Numbers of Distance Graphs with Distance Sets Missing Multiples
Author/Authors
Huang، نويسنده , , Lingling and Chang، نويسنده , , Gerard J، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2000
Pages
8
From page
241
To page
248
Abstract
Given positive integers m, k, s withm & sk, let Dm, k, srepresent the set {1, 2,⋯ , m } \ { k, 2 k,⋯ , sk }. The distance graph G(Z, Dm, k, s) has as vertex set all integersZ and edges connecting i and j whenever | i − j | ∈ Dm, k, s. This paper investigates chromatic numbers and circular chromatic numbers of the distance graphs G(Z, Dm, k,s). Deuber and Zhu and Liu have shown that⌈m + sk + 1s + 1⌉ ≤ χ(G(Z, Dm, k,s)) ≤ ⌈m + sk + 1s + 1⌉ + 1whenm ≥ (s + 1)k. In this paper, by establishing bounds for the circular chromatic number χc(G(Z, Dm,k , s)) of G(Z, Dm, k,s), we determine the values of χ(G(Z, Dm,k , s)) for all positive integers m, k, s andχc (G(Z, Dm, k,s)) for some positive integers m, k, s.
Journal title
European Journal of Combinatorics
Serial Year
2000
Journal title
European Journal of Combinatorics
Record number
1546875
Link To Document