Title of article :
A new proof of the Erdős–Ko–Rado theorem for intersecting families of permutations
Author/Authors :
Godsil، نويسنده , , Chris and Meagher، نويسنده , , Karen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
404
To page :
414
Abstract :
Let S ( n ) be the symmetric group on n points. A subset S of S ( n ) is intersecting if for any pair of permutations π , σ in S there is a point i ∈ { 1 , … , n } such that π ( i ) = σ ( i ) . Deza and Frankl [P. Frankl, M. Deza, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A 22 (3) (1977) 352–360] proved that if S ⊆ S ( n ) is intersecting then | S | ≤ ( n − 1 ) ! . Further, Cameron and Ku [P.J. Cameron, C.Y. Ku, Intersecting families of permutations, European J. Combin. 24 (7) (2003) 881–890] showed that the only sets that meet this bound are the cosets of a stabilizer of a point. In this paper we give a very different proof of this same result.
Journal title :
European Journal of Combinatorics
Serial Year :
2009
Journal title :
European Journal of Combinatorics
Record number :
1547096
Link To Document :
بازگشت