Title of article :
Elementary proof techniques for the maximum number of islands
Author/Authors :
Barلt، نويسنده , , Jلnos and Hajnal، نويسنده , , Péter and Horvلth، نويسنده , , Eszter K.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
276
To page :
281
Abstract :
Islands are combinatorial objects that can be intuitively defined on a board consisting of a finite number of cells. It is a fundamental property that two islands are either containing or disjoint. Czédli determined the maximum number of rectangular islands. Pluhلr solved the same problem for bricks, and Horvلth, Németh and Pluhلr for triangular islands. Here, we give a much shorter proof for these results, and also for new, analogous results on toroidal and some other boards.
Journal title :
European Journal of Combinatorics
Serial Year :
2011
Journal title :
European Journal of Combinatorics
Record number :
1547208
Link To Document :
بازگشت