Title of article :
An insertion algorithm for catabolizability
Author/Authors :
Blasiak، نويسنده , , Jonah، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
267
To page :
276
Abstract :
Our recent work in Blasiak (2011) [1] exhibits a canonical basis of the Garsia–Procesi module R λ with cells labeled by standard tableaux of catabolizability ⊵ λ . Through our study of the Kazhdan–Lusztig preorder on this basis, we found a way to transform a standard word labeling a basis element into a word inserting to the unique tableau of shape λ . This led to an algorithm that computes the catabolizability of the insertion tableau of a standard word. We deduce from this a characterization of catabolizability as the statistic on words invariant under Knuth transformations, certain (co)rotations, and a new set of transformations we call catabolism transformations. We further deduce a Greene’s Theorem-like characterization of catabolizability and a result about how cocyclage changes catabolizability, strengthening a similar result in Shimozono and Weyman (2000) [8].
Journal title :
European Journal of Combinatorics
Serial Year :
2012
Journal title :
European Journal of Combinatorics
Record number :
1547251
Link To Document :
بازگشت