Title of article :
Asymptotic expansion for the Lebesgue constants of the Walsh system
Author/Authors :
Hwang، نويسنده , , Hsien-Kuei Hwang ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
7
From page :
237
To page :
243
Abstract :
Let Lk denote the Lebesgue constants of the Walsh system. The following exact result is established by means of Mellin transforms: ∑1≤k<n Lk=n4log2n+nF(log2n)−Ln2 forn⩾1 where F(u) is a continuous periodic function with period 1 whose Fourier coefficients can be explicitly expressed in terms of Riemannʹs zeta function. This improves an old result of Fine.
Keywords :
Walsh functions , Mellin-Perron formula , Digital sums , Lebesgue constants
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1996
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1547270
Link To Document :
بازگشت