• Title of article

    Coherent State Transforms for Spaces of Connections

  • Author/Authors

    Ashtekar، نويسنده , , Abhay and Lewandowski، نويسنده , , Jerzy and Marolf، نويسنده , , Donald and Mourمo، نويسنده , , José and Thiemann، نويسنده , , Thomas، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1996
  • Pages
    33
  • From page
    519
  • To page
    551
  • Abstract
    The Segal–Bargmann transform plays an important role in quantum theories of linear fields. Recently, Hall obtained a non-linear analog of this transform for quantum mechanics on Lie groups. Given a compact, connected Lie groupGwith its normalized Haar measureμH, the Hall transform is an isometric isomorphism fromL2(G, μH) toH(GC)∩L2(GC, ν), whereGCthe complexification ofG,H(GC) the space of holomorphic functions onGC, andνan appropriate heat-kernel measure onGC. We extend the Hall transform to the infinite dimensional context of non-Abelian gauge theories by replacing the Lie groupGby (a certain extension of ) the spaceA/Gof connections modulo gauge transformations. The resulting “coherent state transform” provides a holomorphic representation of the holonomyC* algebra of real gauge fields. This representation is expected to play a key role in a non-perturbative, canonical approach to quantum gravity in 4 dimensions.
  • Journal title
    Journal of Functional Analysis
  • Serial Year
    1996
  • Journal title
    Journal of Functional Analysis
  • Record number

    1547346