Title of article
Coherent State Transforms for Spaces of Connections
Author/Authors
Ashtekar، نويسنده , , Abhay and Lewandowski، نويسنده , , Jerzy and Marolf، نويسنده , , Donald and Mourمo، نويسنده , , José and Thiemann، نويسنده , , Thomas، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1996
Pages
33
From page
519
To page
551
Abstract
The Segal–Bargmann transform plays an important role in quantum theories of linear fields. Recently, Hall obtained a non-linear analog of this transform for quantum mechanics on Lie groups. Given a compact, connected Lie groupGwith its normalized Haar measureμH, the Hall transform is an isometric isomorphism fromL2(G, μH) toH(GC)∩L2(GC, ν), whereGCthe complexification ofG,H(GC) the space of holomorphic functions onGC, andνan appropriate heat-kernel measure onGC. We extend the Hall transform to the infinite dimensional context of non-Abelian gauge theories by replacing the Lie groupGby (a certain extension of ) the spaceA/Gof connections modulo gauge transformations. The resulting “coherent state transform” provides a holomorphic representation of the holonomyC* algebra of real gauge fields. This representation is expected to play a key role in a non-perturbative, canonical approach to quantum gravity in 4 dimensions.
Journal title
Journal of Functional Analysis
Serial Year
1996
Journal title
Journal of Functional Analysis
Record number
1547346
Link To Document