• Title of article

    On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients

  • Author/Authors

    Mohanty، نويسنده , , R.K. and Jain، نويسنده , , M.K. and George، نويسنده , , Kochurani، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1996
  • Pages
    11
  • From page
    421
  • To page
    431
  • Abstract
    Implicit difference schemes of O(k4 + k2h2 + h4), where k0, h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods.
  • Keywords
    difference method , Linear Stability , hyperbolic equation , polar coordinates , Nonlinear wave equation , Maximum absolute errors
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    1996
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1547429