Title of article :
Forbidden subgraph colorings and the oriented chromatic number
Author/Authors :
Aravind، نويسنده , , N.R. and Subramanian، نويسنده , , C.R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
We present an improved upper bound of O ( d 1 + 1 m − 1 ) for the ( 2 , F ) -subgraph chromatic number χ 2 , F ( G ) of any graph G of maximum degree d . Here, m denotes the minimum number of edges in any member of F . This bound is tight up to a ( log d ) 1 / ( m − 1 ) multiplicative factor and improves the previous bound presented in Aravind and Subramanian (2011) [5]. Along the way, we state and prove an easy-to-use version of the Lovász Local Lemma.
o obtain a relationship connecting the oriented chromatic number χ o ( G ) of graphs and the ( j , F ) -subgraph chromatic numbers χ j , F ( G ) introduced and studied in Aravind and Subramanian (2011) [5]. In particular, we relate the oriented chromatic number and the ( 2 , r ) -treewidth chromatic number and show that χ o ( G ) ≤ k ( ( r + 1 ) 2 r ) k − 1 for any graph G having ( 2 , r ) -treewidth chromatic number at most k . The latter parameter is the least number of colors in any proper vertex coloring which is such that the subgraph induced by the union of any two color classes has treewidth at most r .
o generalize a result of Alon et al. (1996) [3] on acyclic chromatic number of graphs on surfaces (with characteristic − γ ≤ 0 ) to ( 2 , F ) -subgraph chromatic numbers and prove that χ 2 , F ( G ) = O ( γ m / ( 2 m − 1 ) ) for some constant m depending only on F . We also show that this bound is nearly tight. We then use this result to show that graphs of genus g have oriented chromatic number at most 2 O ( g 1 / 2 + ϵ ) for every fixed ϵ > 0 . We also refine the proof of a bound on χ o ( G ) obtained by Kostochka et al. (1997) in [10] to obtain an improved bound on χ o ( G ) .
Journal title :
European Journal of Combinatorics
Journal title :
European Journal of Combinatorics