Title of article :
Ergodicity ofL2-Semigroups and Extremality of Gibbs States
Author/Authors :
Albeverio، نويسنده , , Sergio and Kondratiev، نويسنده , , Yuri G. and Rِckner، نويسنده , , Michael، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
30
From page :
394
To page :
423
Abstract :
We extend the classical results of Holley–Stroock on the characterization of extreme Gibbs states for the Ising model in terms of the irreducibility (resp. ergodicity) of the corresponding Glauber dynamics to the case of lattice systems with unbounded (linear) spin spaces. We first develop a general framework to discuss questions of this type using classical Dirichlet forms on infinite dimensional state spaces and their associated diffusions. We then describe concrete applications to lattice models with polynomial interactions (i.e., the discreteP(ϕ)d-models of Euclidean quantum field theory). In addition, we prove the equivalence of extremality and shift-ergodicity for tempered Gibbs states of these models and also discuss this question in the general framework.
Journal title :
Journal of Functional Analysis
Serial Year :
1997
Journal title :
Journal of Functional Analysis
Record number :
1547969
Link To Document :
بازگشت