Title of article :
Piercing Balls Sitting on a Table by a Vertical Line
Author/Authors :
Maehara، نويسنده , , Hiroshi and Oshiro، نويسنده , , Ai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
9
From page :
509
To page :
517
Abstract :
Let Fnbe a family of disjoint n balls all sitting on a fixed horizontal table T. Let ℓ denote a vertical line that meets T. We prove that if ℓ meets 2 k + 1 balls in Fn, then the radius of the smallest ball among the 2k + 1 balls is at most (2 − 3)ktimes the radius of the biggest ball among the 2 k + 1 balls. Using this result we prove that for anyFn the average number of balls an ℓ meets is at most logn + o(1). A similar result for a two-dimensional version is also given together with a lower bound of the least upper bound.
Journal title :
European Journal of Combinatorics
Serial Year :
2000
Journal title :
European Journal of Combinatorics
Record number :
1548044
Link To Document :
بازگشت