Title of article :
Spaces of Singular Matrices and Matroid Parity
Author/Authors :
Gelbord، نويسنده , , Boaz and Meshulam، نويسنده , , Roy، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
9
From page :
389
To page :
397
Abstract :
Let V be a linear space of even dimension n over a field F of characteristic 0. A subspace W ⊂ ∧ 2 V is maximal singular ifrank (w) ≤ n − 1 for allw ∈ W and any W⫋W′ ⊂ ∧ 2V contains a nonsingular matrix. shown that if W ⊂ ∧ 2V is a maximal singular subspace which is generated by decomposable elements thendimW ≥ 3n2 − 3 and that this bound is sharp. The main tool in the proof is the Lovász Matroid Parity Theorem.
Journal title :
European Journal of Combinatorics
Serial Year :
2002
Journal title :
European Journal of Combinatorics
Record number :
1548094
Link To Document :
بازگشت