Title of article :
Gabor Frames and Time-Frequency Analysis of Distributions
Author/Authors :
Feichtinger، نويسنده , , Hans G. and Grِchenig، نويسنده , , K، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
32
From page :
464
To page :
495
Abstract :
This paper lays the foundation for a quantitative theory of Gabor expansionsf(x)=∑k, nck, n e2πinαxg(x−kβ). In analogy to wavelet expansions of Besov–Triebel–Lizorkin spaces, we show that the correct class of spaces which can be characterized by the magnitude of the coefficientsck, nis the class of modulation spaces. To analyze the behavior of the coefficients, it is necessary to invert the Gabor frame operator on these spaces. We show that the frame operator is invertible on modulation spaces if and only if it is invertible onL2and the atomgis in a suitable space of test functions. A similar statement for wavelet theory is false. The second part is devoted to Gabor analysis on general time–frequency lattices.
Journal title :
Journal of Functional Analysis
Serial Year :
1997
Journal title :
Journal of Functional Analysis
Record number :
1548115
Link To Document :
بازگشت