Title of article :
Coloring squares of planar graphs with girth six
Author/Authors :
Dvo??k، نويسنده , , Zden?k and Kr?l’، نويسنده , , Daniel and Nejedl?، نويسنده , , Pavel and ?krekovski، نويسنده , , Riste، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Wang and Lih conjectured that for every g ≥ 5 , there exists a number M ( g ) such that the square of a planar graph G of girth at least g and maximum degree Δ ≥ M ( g ) is ( Δ + 1 ) -colorable. The conjecture is known to be true for g ≥ 7 but false for g ∈ { 5 , 6 } . We show that the conjecture for g = 6 is off by just one, i.e., the square of a planar graph G of girth at least six and sufficiently large maximum degree is ( Δ + 2 ) -colorable.
Journal title :
European Journal of Combinatorics
Journal title :
European Journal of Combinatorics