Title of article :
Coloring vertices and edges of a graph by nonempty subsets of a set
Author/Authors :
Balister، نويسنده , , P.N. and Gy?ri، نويسنده , , E. and Schelp، نويسنده , , R.H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
5
From page :
533
To page :
537
Abstract :
A graph G is strongly set colorable if V ( G ) ∪ E ( G ) can be assigned distinct nonempty subsets of a set of order n , where | V ( G ) | + | E ( G ) | = 2 n − 1 , such that each edge is assigned the symmetric difference of its end vertices. We prove results about strongly set colorability of graphs (they are related to a conjecture of S.M. Hegde.) We also prove another conjecture of Hegde on a related type of set coloring of complete bipartite graphs.
Journal title :
European Journal of Combinatorics
Serial Year :
2011
Journal title :
European Journal of Combinatorics
Record number :
1548388
Link To Document :
بازگشت