Title of article :
Backward Shift Invariant Operator Ranges
Author/Authors :
Ferguson، نويسنده , , Sarah H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
18
From page :
526
To page :
543
Abstract :
Results on first order Ext groups for Hilbert modules over the disk algebra are used to study certain backward shift invariant operator ranges, namely de Branges–Rovnyak spaces and a more general class called H(W; B) spaces. Necessary and sufficient conditions are given for the groups Ext1A(D)(H2C, H(W; B)) to vanish whereH2Cis thedualof the vector-valued Hardy module, H2C. One condition involves an extension problem for the Hankel operator with symbolB,ΓB, but viewed as a module map from H2Cinto H(W; B). The group Ext1A(D)(H2C, H(W; B))=(0) precisely whenΓBextends to a module map from L2Cinto H(W; B) and this in turn is equivalent to the injectivity of H(W; B) in the category of contractive HilbertA(D)-modules. This result applied to the de Branges–Rovnyak spaces yields a connection between the extension problem for the HankelΓB and the operator corona problem.
Journal title :
Journal of Functional Analysis
Serial Year :
1997
Journal title :
Journal of Functional Analysis
Record number :
1548399
Link To Document :
بازگشت