Title of article :
Error bounds in the isometric Arnoldi process
Author/Authors :
Angelika Bunse-Gerstner، نويسنده , , A. and Faكbender، نويسنده , , H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
20
From page :
53
To page :
72
Abstract :
Error bounds for the eigenvalues computed in the isometric Arnoldi method are derived. The Arnoldi method applied to a unitary matrix U successively computes a sequence of unitary upper Hessenberg matrices Hk, k = 1,2,… The eigenvalues of the Hkʹs are increasingly better approximations to eigenvalues of U. An upper bound for the distance of the spectrum of Hk from the spectrum of U, and an upper bound for the distance between each individual eigenvalue of Hk and one of U are given. Between two eigenvalues of Hk on the unit circle, there is guaranteed to lie an eigenvalue of U. The results are applied to a problem in signal processing.
Keywords :
Signal Processing , Unitary eigenvalue problem , Arnoldi process , Error bounds
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1997
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1548505
Link To Document :
بازگشت