Title of article :
Digraphical Regular Representations of Infinite Finitely Generated Groups
Author/Authors :
Mِller، نويسنده , , R.G. and Seifter، نويسنده , , N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Abstract :
A directed Cayley graphXis called a digraphical regular representation (DRR) of a groupGif the automorphism group ofXacts regularly onX. LetSbe a finite generating set of the infinite cyclic groupZ. We show that a directed Cayley graphX(Z,S) is aDRRofZif and only ifS ≠ S−1. IfX(Z,S) is not aDRRwe show thatAut (X(Z,S)) = D∞. As a general result we prove that a Cayley graphXof a finitely generated torsion-free nilpotent groupNis aDRRif and only if no non-trivial automorphism ofNof finite order leaves the generating set invariant.
Journal title :
European Journal of Combinatorics
Journal title :
European Journal of Combinatorics