Title of article :
Zero-sum Square Matrices
Author/Authors :
Balister، نويسنده , , Paul and Caro، نويسنده , , Yair and Rousseau، نويسنده , , Cecil and Yuster، نويسنده , , Raphael، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
Let A be a matrix over the integers, and let p be a positive integer. A submatrix B of A is zero-summodp if the sum of each row of B and the sum of each column of B is a multiple of p. Let M(p, k) denote the least integer m for which every square matrix of order at least m has a square submatrix of order k which is zero-sum modp. In this paper we supply upper and lower bounds for M(p, k). In particular, we prove that limsupM(2, k) / k ≤ 4, liminfM(3, k) / k ≤ 20, and that M(p, k) ≥ k22 eexp(1 / e)p / 2. Some nontrivial explicit values are also computed.
Journal title :
European Journal of Combinatorics
Journal title :
European Journal of Combinatorics