• Title of article

    On Line Arrangements in the Hyperbolic Plane

  • Author/Authors

    Dress، نويسنده , , A. and Koolen، نويسنده , , J.H. and Moulton، نويسنده , , V.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2002
  • Pages
    9
  • From page
    549
  • To page
    557
  • Abstract
    Given a finite collection L of lines in the hyperbolic plane H, we denote byk = k(L) its Karzanov number, i.e., the maximal number of pairwise intersecting lines in L, and by C(L) and n = n (L) the set and the number, respectively, of those points at infinity that are incident with at least one line from L. By using purely combinatorial properties of cyclic sets, it is shown that#L ≤ 2 nk − ( 2 k + 1 2 ) always holds and that #L equals 2 nk − ( 2 k + 1 2 ) if and only if there is no collection L′ of lines in H with L⊊L′,k (L′) = k(L) andC (L′) = C(L).
  • Journal title
    European Journal of Combinatorics
  • Serial Year
    2002
  • Journal title
    European Journal of Combinatorics
  • Record number

    1548735