Title of article :
On Line Arrangements in the Hyperbolic Plane
Author/Authors :
Dress، نويسنده , , A. and Koolen، نويسنده , , J.H. and Moulton، نويسنده , , V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
9
From page :
549
To page :
557
Abstract :
Given a finite collection L of lines in the hyperbolic plane H, we denote byk = k(L) its Karzanov number, i.e., the maximal number of pairwise intersecting lines in L, and by C(L) and n = n (L) the set and the number, respectively, of those points at infinity that are incident with at least one line from L. By using purely combinatorial properties of cyclic sets, it is shown that#L ≤ 2 nk − ( 2 k + 1 2 ) always holds and that #L equals 2 nk − ( 2 k + 1 2 ) if and only if there is no collection L′ of lines in H with L⊊L′,k (L′) = k(L) andC (L′) = C(L).
Journal title :
European Journal of Combinatorics
Serial Year :
2002
Journal title :
European Journal of Combinatorics
Record number :
1548735
Link To Document :
بازگشت