Title of article
On Line Arrangements in the Hyperbolic Plane
Author/Authors
Dress، نويسنده , , A. and Koolen، نويسنده , , J.H. and Moulton، نويسنده , , V.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2002
Pages
9
From page
549
To page
557
Abstract
Given a finite collection L of lines in the hyperbolic plane H, we denote byk = k(L) its Karzanov number, i.e., the maximal number of pairwise intersecting lines in L, and by C(L) and n = n (L) the set and the number, respectively, of those points at infinity that are incident with at least one line from L. By using purely combinatorial properties of cyclic sets, it is shown that#L ≤ 2 nk − ( 2 k + 1 2 ) always holds and that #L equals 2 nk − ( 2 k + 1 2 ) if and only if there is no collection L′ of lines in H with L⊊L′,k (L′) = k(L) andC (L′) = C(L).
Journal title
European Journal of Combinatorics
Serial Year
2002
Journal title
European Journal of Combinatorics
Record number
1548735
Link To Document