Title of article :
Weak Eigenfunctions for the Linearization of Extremal Elliptic Problems
Author/Authors :
Cabré، نويسنده , , Xavier and Martel، نويسنده , , Yvan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
27
From page :
30
To page :
56
Abstract :
We consider the semilinear elliptic problem[formula]whereλis a nonnegative parameter andgis a positive, nondecreasing, convex nonlinearity. There exists a valueλ* of the parameter which is extremal in terms of existence of solution. We study the linearization of the semilinear problem at the extremal weak solution corresponding to the parameterλ=λ*. In some cases, this linearized problem has discrete and positiveH10-spectrum. However, we prove that there always exists a positive weak eigenfunction inL1(Ω) with eigenvalue zero for this linearized problem. The zeroL1-eigenvalue is coherent with the nonexistence of solutions of the semilinear problem forλ>λ*. Finally, we find all weak eigenfunctions and eigenvalues for the linearization of the extremal problem whenΩis the unit ball andg(u)=euorg(u)=(1+u)p.
Journal title :
Journal of Functional Analysis
Serial Year :
1998
Journal title :
Journal of Functional Analysis
Record number :
1548762
Link To Document :
بازگشت