Title of article :
Zero-sum problems and coverings by proper cosets
Author/Authors :
Gao، نويسنده , , Weidong and Geroldinger، نويسنده , , Alfred، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
19
From page :
531
To page :
549
Abstract :
Let G be a finite Abelian group and D(G) its Davenport constant, which is defined as the maximal length of a minimal zero-sum sequence in G. We show that various problems on zero-sum sequences in G may be interpreted as certain covering problems. Using this approach we study the Davenport constant of groups of the form (Z/nZ)r, with n≥2 and r∈N. For elementary p-groups G, we derive a result on the structure of minimal zero-sum sequences S having maximal length |S|=D(G).
Journal title :
European Journal of Combinatorics
Serial Year :
2003
Journal title :
European Journal of Combinatorics
Record number :
1548771
Link To Document :
بازگشت