Title of article
Distributions of Localized Eigenvalues of Laplacians on Post Critically Finite Self-Similar Sets
Author/Authors
Kigami، نويسنده , , Jun، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1998
Pages
29
From page
170
To page
198
Abstract
In this paper, we study distributions of eigenvalues corresponding to localized eigenfunctions of Laplacians on p.c.f. self-similar sets. Precisely, we divide the eigenvalue counting functionρ(x) of a Laplacian into two parts,ρW(x) andρF(x), whereρW(x) is the counting function of localized eigenvalues andρF(x) is the counting function of non-localized (global) eigenvalues. We study asymptotic behaviors ofρW(x) andρF(x) asx→∞. It is shown thatρW(x)≈xdS/2wheredSis the spectral exponent. On the other hand, for a class of Laplacians, including the standard Laplacian on the Sierpinski gasket,ρF(x)≈xκFfor someκF<dS/2. So localized eigenfunctions dominate global eigenfunctions in such cases.
Journal title
Journal of Functional Analysis
Serial Year
1998
Journal title
Journal of Functional Analysis
Record number
1548772
Link To Document