Title of article :
More about shifting techniques
Author/Authors :
Ahlswede، نويسنده , , R. and Aydinian، نويسنده , , H. and Khachatrian، نويسنده , , L.H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
6
From page :
551
To page :
556
Abstract :
We discovered a new and simple shifting technique. It makes it possible to prove results on shadows like the Kruskal–Katona theorem without any additional arguments. ther application we obtain the following new result. For s, d, k∈N, 1≤d≤s, d≤k define the subclass of Nk (the k-subsets of N) B(k,s,d)=B∈Nk:|B∩[1,s]|≥d. Let A⊂B(k,s,d) and |A|=m. Then the cardinality of the ℓ-shadow of A is minimal if A consists of the first m elements of B(k,s,d) in colexicographic order. A more general form of this result is given as well. Other applications are to be expected.
Keywords :
Kruskal–Katona theorem , Shifting , shadow
Journal title :
European Journal of Combinatorics
Serial Year :
2003
Journal title :
European Journal of Combinatorics
Record number :
1548774
Link To Document :
بازگشت