Title of article :
Ramsey-type results on singletons, co-singletons and monotone sequences in large collections of sets
Author/Authors :
Gravier، نويسنده , , Sylvain and Maffray، نويسنده , , Frédéric and Renault، نويسنده , , Jérôme and Trotignon، نويسنده , , Nicolas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
16
From page :
719
To page :
734
Abstract :
We say that a 0–1 matrix N of size a×b can be found in a collection of sets H if we can find sets H1,H2,…,Ha in H and elements e1,e2,…,eb in ∪H∈HH such that N is the incidence matrix of the sets H1,H2,…,Ha over the elements e1,e2,…,eb. We prove the following Ramsey-type result: for every n∈N, there exists a number S(n) such that in any collection of at least S(n) sets, one can find either the incidence matrix of a collection of n singletons, or its complementary matrix, or the incidence matrix of a collection of n sets completely ordered by inclusion. We give several results of the same extremal set theoretical flavour. For some of these, we give the exact value of the number of sets required.
Journal title :
European Journal of Combinatorics
Serial Year :
2004
Journal title :
European Journal of Combinatorics
Record number :
1548793
Link To Document :
بازگشت