Title of article
Endpoint Inequalities for Spherical Multilinear Convolutions
Author/Authors
Bak، نويسنده , , Jong-Guk and Shim، نويسنده , , Yong-Sun، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1998
Pages
20
From page
534
To page
553
Abstract
Writeσ=(σ1, …, σn) for an element of the sphereΣn−1and letdσdenote Lebesgue measure onΣn−1. For functionsf1, …, fnonR, defineT(f1, …, fn(x)=∫Σn−1 f1(x−σ1)…fn(x−σn) dσ,x∈RLetR=R(n) denote the closed convex hull inR2of the points (0, 0), (1/n, 1), ((n+1)/(n+2), 1), ((n+1)/(n+3), 2/(n+3)), ((n−1)/(n+1), 0). We show that ifn⩾3, then the inequality‖T(f1, …, fn)‖q⩽C ‖f1‖p…‖fn‖pholds if and only if (1/p, 1/q)∈R. Our results fill in the gap in the necessary and sufficient conditions whenn⩾3 in Oberlinʹs previous work. A negative result is given along with some positive results, whenn=2, thus narrowing the gap in the necessary and sufficient conditions in this case.
Journal title
Journal of Functional Analysis
Serial Year
1998
Journal title
Journal of Functional Analysis
Record number
1548866
Link To Document