Title of article :
Approximation order of bivariate spline interpolation for arbitrary smoothness
Author/Authors :
Davydov، نويسنده , , O.V. and Nürnberger، نويسنده , , G. and Zeilfelder، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
18
From page :
117
To page :
134
Abstract :
By using the algorithm of Nürnberger and Riessinger (1995), we construct Hermite interpolation sets for spaces of bivariate splines Sqr(Δ1) of arbitrary smoothness defined on the uniform type triangulations. It is shown that our Hermite interpolation method yields optimal approximation order for q ⩾ 3.5r + 1. In order to prove this, we use the concept of weak interpolation and arguments of Birkhoff interpolation.
Keywords :
Bivariate splines , Interpolation method , Optimal approximation order
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1998
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1548954
Link To Document :
بازگشت