• Title of article

    Integrable Harmonic Functions on Symmetric Spaces of Rank One

  • Author/Authors

    Ben Natan، نويسنده , , Yaakov and Weit، نويسنده , , Yitzhak، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1998
  • Pages
    9
  • From page
    141
  • To page
    149
  • Abstract
    If f ∈L1(dμ) is harmonic in the spaceG/K, whereμis a radial measure withμ(G/K)=1, we have, by the mean value propertyf=f∗μ. Conversely, does this mean value property imply thatfis harmonic ? In this paper we give a new and natural proof of a result obtained by P. Ahern, A. Flores, W. Rudin (J. Funct. Anal.11(1993), 380–397) and A. Koranyi (Contemp. Math.191(1995), 107–116) and generalize their result by providing sufficient conditions for a finite set of radial measuresμion a symmetric space of rank one for whichf∗μi=fimply thatfis harmonic.
  • Keywords
    harmonic functions , mean value property , symmetric spaces of rank one
  • Journal title
    Journal of Functional Analysis
  • Serial Year
    1998
  • Journal title
    Journal of Functional Analysis
  • Record number

    1549052