Title of article
Strongly Harmonic Forms for Representations in the Discrete Series
Author/Authors
Barchini، نويسنده , , L.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1999
Pages
21
From page
111
To page
131
Abstract
LetGbe a semisimple connected Lie group and letKbe a maximal compact subgroup. Assume that rankG=rank K, and letT⊂Kbe a Cartan subgroup ofG. The quotientG/Tcarries an indefiniteG-invariant hermitian form. The standard ∂ Dolbeault operator has a formal adjoint differential operator ∂*invwith respect to the invariant hermitian form. Letsdenote the complex dimension ofK/T. We form the indefinite harmonic space Hs(G/T, Lχ+2ρ)={(0, s)+Lχ+2ρ×valued forms in Ker ∂∩Ker ∂*inv}. In this paper we show that under some positivity conditions onχthe cohomology space Hs(G/T, Lχ) contains a copy of the representation in the discrete series ofGwith parameterχ.
Journal title
Journal of Functional Analysis
Serial Year
1999
Journal title
Journal of Functional Analysis
Record number
1549135
Link To Document