Title of article :
Accumulation of Discrete Eigenvalues of the Radial Dirac Operator
Author/Authors :
Griesemer، نويسنده , , Marcel and Lutgen، نويسنده , , Joseph، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
15
From page :
120
To page :
134
Abstract :
For bounded potentials which behave like −cx−γat infinity we investigate whether discrete eigenvalues of the radial Dirac operatorHκaccumulate at +1 or not. It is well known thatγ=2 is the critical exponent. We show thatc=1/8+κ(κ+1)/2 is the critical coupling constant in the caseγ=2. Our approach is to transform the radial Dirac equation into a Sturm–Liouville equation nonlinear in the spectral parameter and to apply a new, general result on accumulation of eigenvalues of such equations.
Keywords :
accumulation of eigenvalues , radial Dirac operator , critical coupling constant , Non-relativistic limit , Sturm–Liouville equation
Journal title :
Journal of Functional Analysis
Serial Year :
1999
Journal title :
Journal of Functional Analysis
Record number :
1549199
Link To Document :
بازگشت