Title of article :
Common Eigenvalue Problem and Periodic Schrِdinger Operators
Author/Authors :
Mikhailets، نويسنده , , Vladimir A and Sobolev، نويسنده , , Alexander V، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
23
From page :
150
To page :
172
Abstract :
Let A be a subset of the family of all self-adjoint extensions of a symmetric operator A0 with equal deficiency indices in a Hilbert space. Assuming that A0 has a purely residual spectrum we describe the set of eigenvalues common to all self-adjoint extensions from A. This abstract result is used to show that the one-dimensional periodic Schrِdinger operator with local point interactions is absolutely continuous.
Keywords :
Absolutely continuous spectrum , local point interactions , self-adjoint extensions , common eigenvalues , periodic Schrِdinger operator
Journal title :
Journal of Functional Analysis
Serial Year :
1999
Journal title :
Journal of Functional Analysis
Record number :
1549356
Link To Document :
بازگشت