Title of article :
Radial Points in the Plane
Author/Authors :
Pach، نويسنده , , Jلnos and Sharir، نويسنده , , Micha، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
9
From page :
855
To page :
863
Abstract :
A radial point for a finite set P in the plane is a pointq ≠ ∈ P with the property that each line connecting q to a point ofP passes through at least one other element of P. We prove a conjecture of Pinchasi, by showing that the number of radial points for a non-collinear n -element set P is O(n). We also present several extensions of this result, generalizing theorems of Beck, Szemerédi and Trotter, and Elekes on the structure of incidences between points and lines.
Journal title :
European Journal of Combinatorics
Serial Year :
2001
Journal title :
European Journal of Combinatorics
Record number :
1549391
Link To Document :
بازگشت