Title of article :
Hyperbolic Bridged Graphs
Author/Authors :
Koolen، نويسنده , , Jack H. and Moulton، نويسنده , , Vincent، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
17
From page :
683
To page :
699
Abstract :
Given a connected graph G, we take, as usual, the distance xy between any two verticesx , y of G to be the length of some geodesic between x and y. The graph G is said to be δ - hyperbolic, for some δ ≥ 0, if for all vertices x,y , u, v in G the inequality xy + uv ≤ max{ xu + yv,xv + yu } + δholds, and G isbridged if it contains no finite isometric cycles of length four or more. In this paper, we will show that a finite connected bridged graph is 1-hyperbolic if and only if it does not contain any of a list of six graphs as an isometric subgraph.
Journal title :
European Journal of Combinatorics
Serial Year :
2002
Journal title :
European Journal of Combinatorics
Record number :
1549406
Link To Document :
بازگشت