Title of article :
Partial differential equations having orthogonal polynomial solutions
Author/Authors :
Kim، نويسنده , , Y.J. and Kwon، نويسنده , , K.H. and Lee، نويسنده , , J.K.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
15
From page :
239
To page :
253
Abstract :
We show that if a second order partial differential equation: L[u]:= Auxx + 2Buxy + Cuyy + Dux + Euy = λnu has orthogonal polynomial solutions, then the differential operator L[·] must be symmetrizable and can not be parabolic in any nonempty open subset of the plane. We also find Rodrigues type formula for orthogonal polynomial solutions of such differential equations.
Keywords :
Symmetrizability , partial differential equations , Rodrigues type formula , Orthogonal polynomials in two variables
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1998
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1549434
Link To Document :
بازگشت