Title of article :
Borodin’s conjecture on diagonal coloring is false
Author/Authors :
Kr?l’، نويسنده , , Daniel and ?krekovski، نويسنده , , Riste، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
4
From page :
813
To page :
816
Abstract :
In a 1-diagonal coloring, vertices of any face and vertices of any two faces sharing an edge have to get different colors. Borodin proved that any triangulation of a surface of Euler genus g≥1 can be 1-diagonally colored by ⌊13+73+48g2⌋ colors. The bound is conjectured to be sharp for all surfaces except for the sphere (g=0). We disprove this conjecture.
Journal title :
European Journal of Combinatorics
Serial Year :
2004
Journal title :
European Journal of Combinatorics
Record number :
1549458
Link To Document :
بازگشت