• Title of article

    Borodin’s conjecture on diagonal coloring is false

  • Author/Authors

    Kr?l’، نويسنده , , Daniel and ?krekovski، نويسنده , , Riste، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    4
  • From page
    813
  • To page
    816
  • Abstract
    In a 1-diagonal coloring, vertices of any face and vertices of any two faces sharing an edge have to get different colors. Borodin proved that any triangulation of a surface of Euler genus g≥1 can be 1-diagonally colored by ⌊13+73+48g2⌋ colors. The bound is conjectured to be sharp for all surfaces except for the sphere (g=0). We disprove this conjecture.
  • Journal title
    European Journal of Combinatorics
  • Serial Year
    2004
  • Journal title
    European Journal of Combinatorics
  • Record number

    1549458