Title of article
Borodin’s conjecture on diagonal coloring is false
Author/Authors
Kr?l’، نويسنده , , Daniel and ?krekovski، نويسنده , , Riste، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2004
Pages
4
From page
813
To page
816
Abstract
In a 1-diagonal coloring, vertices of any face and vertices of any two faces sharing an edge have to get different colors. Borodin proved that any triangulation of a surface of Euler genus g≥1 can be 1-diagonally colored by ⌊13+73+48g2⌋ colors. The bound is conjectured to be sharp for all surfaces except for the sphere (g=0). We disprove this conjecture.
Journal title
European Journal of Combinatorics
Serial Year
2004
Journal title
European Journal of Combinatorics
Record number
1549458
Link To Document