Title of article :
Uniqueness of Symmetric Vortex Solutions in the Ginzburg–Landau Model of Superconductivity
Author/Authors :
Stan Alama، نويسنده , , Stan and Bronsard، نويسنده , , Lia and Giorgi، نويسنده , , Tiziana، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
Symmetric vortices are finite energy solutions ψ, A to the Ginzburg–Landau equations of superconductivity with the form ψ=f(r) eidθ, A=S(r)/r2(−y, x). The existence, regularity, and asymptotic form of the solutions f(r), S(r) for any d∈Z\{0} have been established by Plohr and by Burger and Chen. In this paper we prove the uniqueness of these solutions when the Ginzburg–Landau parameter κ satisfies κ2⩾2d2, for any fixed d∈Z\{0}. To do this, we show that any such solution is a non-degenerate relative minimizer of the free energy functional constrained to a convex set, then use a version of the Mountain Pass Theorem to derive a contradiction, should there be more than one solution.
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis