Title of article :
Some factorisations counted by Catalan numbers
Author/Authors :
Gewurz، نويسنده , , Daniele A. and Merola، نويسنده , , Francesca، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
5
From page :
990
To page :
994
Abstract :
In this paper, yet another occurrence of the Catalan numbers is presented; it is shown that the number of primitive factorisations of the cyclic permutation ( 1 2 … n + 1 ) into n transpositions is C n , the n -th Catalan number. A factorisation ( ( a 1 b 1 ) , ( a 2 b 2 ) , … , ( a n b n ) ) is primitive if its transpositions are “ordered”, in the sense that the a i s are non-decreasing. w that the sequence counting primitive factorisations satisfies the recurrence for Catalan numbers, and we exhibit an explicit bijection between the set of primitive factorisations and the set of 231-avoiding permutations, known to have size counted by Catalan numbers.
Journal title :
European Journal of Combinatorics
Serial Year :
2006
Journal title :
European Journal of Combinatorics
Record number :
1549547
Link To Document :
بازگشت