Title of article
Subspaces Generated by Translations in Rearrangement Invariant Spaces
Author/Authors
Hernandez، نويسنده , , Francisco L. and Semenov، نويسنده , , Evgueni M.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1999
Pages
29
From page
52
To page
80
Abstract
In the setting of rearrangement invariant (r.i.) Banach function spaces E on [0, ∞) we study the complementability of subspaces Qa generated by sequences of translations of functions a∈E[0, 1). An r.i. function space E is said to be nice (in short, E∈N) if every subspace of type Qa is complemented. We give necessary and sufficient conditions for an r.i. function space to be nice. We determinate the Orlicz, Lorentz and Marcinkiewicz spaces belonging to the class N. As an application we obtain a new characterization of the Lp-spaces, 1<p<∞, among the class of r.i. function spaces.
Journal title
Journal of Functional Analysis
Serial Year
1999
Journal title
Journal of Functional Analysis
Record number
1549577
Link To Document