Title of article :
A Rationality Criterion for Unbounded Operators
Author/Authors :
Linnell، نويسنده , , Peter A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
9
From page :
115
To page :
123
Abstract :
Résumé be a group, let U(G) denote the set of unbounded operators on L2(G) which are affiliated to the group von Neumann algebra W(G) of G, and let D(G) denote the division closure of CG in U(G). Thus D(G) is the smallest subring of U(G) containing CG which is closed under taking inverses. If G is a free group then D(G) is a division ring, and in this case we shall give a criterion for an element of U(G) to be in D(G). This extends a result of Duchamp and Reutenauer, which was concerned with proving a conjecture of Connes. Copyright 2000 Academic Press. Soient G un groupe, U(G) lʹensemble dʹopérateurs non bornés affiliés à lʹalgèbre de von Neumann de groupe de G, et D(G) la clôture de division de CG dans U(G). Ainsi D(G) est le plus petit anneau qui est fermé sous lʹopération dʹinverse. Si G est un group libre, nous donnons un critère pour quʹun élément de U(G) soit dans D(G).
Keywords :
unbounded operator , Finite rank , division closure
Journal title :
Journal of Functional Analysis
Serial Year :
2000
Journal title :
Journal of Functional Analysis
Record number :
1549732
Link To Document :
بازگشت