Title of article :
Para-orthogonal Laurent polynomials and the strong Stieltjes moment problem
Author/Authors :
Bonan-Hamada، نويسنده , , Catherine M. and Jones، نويسنده , , William B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
11
From page :
175
To page :
185
Abstract :
On the space, A of Laurent polynomials we consider a linear functional L which is positive definite on (0,∞) and is defined in terms of a given bisequence, {ck}k=−∞∞. For each ω>0, we define a sequence {Nn(z,ω)}n=0∞ of rational functions in terms of two sequences of orthogonal Laurent polynomials, {Qn(z)}n=0∞ and {Q̂n(z)}n=0∞, which span A in the order {1,z−1,z,z−2,z2,…} and {1,z,z−1,z2,z−2,…}, respectively. It is shown that the numerators and denominators of each Nn(z,ω) are linear combinations of the canonical numerators and denominators of a modified PC-fraction. Consequently, {N2n(z,ω)}n=0∞ and {N2n+1(z,ω)}n=0∞ converge uniformly on compact subsets of C–{0} to analytic functions and hence lead to additional solutions to the strong Stieltjes moment problem.
Keywords :
Laurent polynomial , PC-fraction , Stieltjes , Continued fraction , M-fraction , Moment problem , orthogonal , T-fraction , Para-orthogonal
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1999
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1549875
Link To Document :
بازگشت