• Title of article

    Para-orthogonal Laurent polynomials and the strong Stieltjes moment problem

  • Author/Authors

    Bonan-Hamada، نويسنده , , Catherine M. and Jones، نويسنده , , William B.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1999
  • Pages
    11
  • From page
    175
  • To page
    185
  • Abstract
    On the space, A of Laurent polynomials we consider a linear functional L which is positive definite on (0,∞) and is defined in terms of a given bisequence, {ck}k=−∞∞. For each ω>0, we define a sequence {Nn(z,ω)}n=0∞ of rational functions in terms of two sequences of orthogonal Laurent polynomials, {Qn(z)}n=0∞ and {Q̂n(z)}n=0∞, which span A in the order {1,z−1,z,z−2,z2,…} and {1,z,z−1,z2,z−2,…}, respectively. It is shown that the numerators and denominators of each Nn(z,ω) are linear combinations of the canonical numerators and denominators of a modified PC-fraction. Consequently, {N2n(z,ω)}n=0∞ and {N2n+1(z,ω)}n=0∞ converge uniformly on compact subsets of C–{0} to analytic functions and hence lead to additional solutions to the strong Stieltjes moment problem.
  • Keywords
    Laurent polynomial , PC-fraction , Stieltjes , Continued fraction , M-fraction , Moment problem , orthogonal , T-fraction , Para-orthogonal
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    1999
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1549875